2008 MARG Microarray Survey

Sensing the state of microarray technology
Microarrays:

15 years of rapid development & expanding use

- Developed in early 90’s
 - Pat Brown & colleagues: spotted arrays
 - Steve Fodor & Affymetrix: oligo arrays
- Over last 6-7 years growth in other types and vendors of arrays: Agilent, Illumina, ABI, NimbleGen, …
- Applications: expression, DNA variation analysis, genome regulation
 Goals of 2008 MARG Survey

- Describe current state of microarray use and MA facility operations
- Identify trends in use of new arrays, new applications, and new platforms
- Compare 2008 picture to results from previous MARG surveys
- Assess interest in new, high throughput technologies for genomics research
Survey development & data collection

Survey Design

- Collect information on instrumentation, protocols, staffing, arrays and throughput in a microarray facilities.
- Questions developed by members of MARG and hosted by SurveyMonkey.com.
- Responses collected by third-party who removed information identifying the participant prior to making data available to the MARG for analysis.

Survey Dissemination and Participation.

- In addition to laboratories that offer microarray technologies as a shared resource, individual laboratories with these technologies were also invited to participate.
- Participation was open to anyone regardless of affiliation with ABRF.
- Participants had option of completing only sections of the survey that related to their microarray operation.

Survey analysis

- Data was analyzed by the MARG to build a current profile of microarray analysis laboratories.
Respondent demographics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#respondents</td>
<td>149</td>
<td>213</td>
<td>115</td>
<td>72</td>
<td>47</td>
</tr>
<tr>
<td>Location</td>
<td>74%*</td>
<td>67%*</td>
<td>74%*</td>
<td>73%*</td>
<td>NA</td>
</tr>
<tr>
<td>Inst type</td>
<td>77%^</td>
<td>75%^</td>
<td>73%^</td>
<td>55%^</td>
<td>30%^</td>
</tr>
<tr>
<td>Core facility</td>
<td>71%</td>
<td>76%</td>
<td>78%</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*USA/Canada
^academic

Conclusion: Can compare 2008 results to previous surveys.
Survey sections

- General Section
- Platforms, Services and Throughput
- Commercial Arrays: types, user satisfaction, assay methods and QA/QC
- Bioinformatics: Data Analysis
- Bioinformatics: Data Management
- Next Generation Technologies
- Future directions
Facility Profile

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2005</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full service</td>
<td>55/79%</td>
<td>76%</td>
<td></td>
</tr>
<tr>
<td>Use GLP</td>
<td>21%</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td>Open access</td>
<td>66%</td>
<td>64%</td>
<td>65%</td>
</tr>
<tr>
<td>Education prgm</td>
<td>61%</td>
<td>54%</td>
<td>57%</td>
</tr>
</tbody>
</table>

In 2008, 74% of MA facilities had been in operation for over 4 years; only 6% less than 2 yrs.
Personnel

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2005</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAFF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#’s</td>
<td>N/A</td>
<td><3.8></td>
<td><3.2></td>
</tr>
<tr>
<td>Experience (yrs)</td>
<td><1.4></td>
<td><3.5></td>
<td><4.2></td>
</tr>
<tr>
<td>DIRECTOR:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience (yrs)</td>
<td><2.3></td>
<td><4.6></td>
<td><6.3></td>
</tr>
<tr>
<td>Plan</td>
<td>N/A</td>
<td>52%</td>
<td>32%</td>
</tr>
<tr>
<td>expansion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 2008 #’s are estimates
Core Lab Services, N=96

- RNA isolation services offered by 50% of facilities; DNA isolation by 29%
- 85% of facilities provide sample labeling through data acquisition for expression assays; 64% label DNA for non-expression assays
- 78% provide limited data analysis; comprehensive data analysis available in 59% of facilities
- 54% of facilities provide support for data publication
Challenges

Challenging Areas for Respondents, N=98

- Hardware reliability
- Software
- Operations funding
- Bioinformatics
- Research commitments
- Capacity limitations
- Other

% Respondents
Summary: Facility Profile 2008

- Most MA facilities are relatively mature operations: have used MA technology for more than 4 yrs; staff and directors very experienced; not planning to add staff.
- Most core labs are full service from sample labeling through data acquisition
- Bioinformatics is a challenging area for majority of MA facilities
Platforms & Array Throughput
Automation

- **Use robot for high throughput labeling**

 19% YES

- **Planning to buy robot in 2008**

 12% YES
Array assay outsourcing

N=103

<table>
<thead>
<tr>
<th>Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 arrays/yr</td>
<td>2%</td>
</tr>
<tr>
<td>100 arrays/yr</td>
<td>6%</td>
</tr>
<tr>
<td>50 arrays/yr</td>
<td>3%</td>
</tr>
<tr>
<td>< 50 arrays/yr</td>
<td>12%</td>
</tr>
<tr>
<td>NONE</td>
<td>78%</td>
</tr>
</tbody>
</table>
Throughput #’s may be underestimate if respondents assumed multi-array slides were counted as single array units.
Array Projection 2008

- Increase: 52%
- Stay the same: 38%
- Decrease: 11%
Commercial Arrays
<table>
<thead>
<tr>
<th>% arrays</th>
<th>% respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10%</td>
<td>9%</td>
</tr>
<tr>
<td>10-25</td>
<td>4</td>
</tr>
<tr>
<td>25-50</td>
<td>9</td>
</tr>
<tr>
<td>50-75</td>
<td>8</td>
</tr>
<tr>
<td>>75</td>
<td>69</td>
</tr>
</tbody>
</table>
Array types used: Affymetrix/Illumina

<table>
<thead>
<tr>
<th>ARRAY TYPE</th>
<th>AFFYMETRIX (n=63)</th>
<th>ILLUMINA (n=37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPRESSION:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole genome</td>
<td>98% (3’IVT)</td>
<td>86%</td>
</tr>
<tr>
<td>whole genome: exon</td>
<td>60</td>
<td>N/A</td>
</tr>
<tr>
<td>targeted expression</td>
<td>N/A</td>
<td>32</td>
</tr>
<tr>
<td>custom expression</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>GENOTYPING:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole genome: 10^6 + markers</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>whole genome: <10^6 markers</td>
<td>44</td>
<td>60</td>
</tr>
<tr>
<td>targeted</td>
<td>8</td>
<td>49</td>
</tr>
<tr>
<td>custom</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>OTHER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tiling</td>
<td>48</td>
<td>N/A</td>
</tr>
<tr>
<td>resequencing</td>
<td>22</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Array preference: expression analysis

<table>
<thead>
<tr>
<th>Respondents</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affymetrix</td>
<td>48%</td>
</tr>
<tr>
<td>Illumina</td>
<td>20</td>
</tr>
<tr>
<td>Agilent</td>
<td>21</td>
</tr>
<tr>
<td>ABI</td>
<td>2</td>
</tr>
<tr>
<td>NimbleGen</td>
<td>1</td>
</tr>
<tr>
<td>Exiqon</td>
<td>1</td>
</tr>
<tr>
<td>In-house spotted</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
</tr>
</tbody>
</table>
Commercial arrays

Product satisfaction

Service satisfaction

Fraction of responses

Axminster

Combimatrix (n=5)

Exiqon (n=12)

NimbleGen (n=13)

Appl Bio (n=11)

Agilent (n=38)

Illumina (n=34)

Affymetrix (n=51)
Summary: Commercial arrays

- 77% of respondents use commercial arrays for most or all of their array throughput

- Whole genome expression profiling is most widely used array application on both Affymetrix and Illumina platforms

- Among respondents (n=90), Affymetrix arrays preferentially used for expression analysis in 48% of facilities, Agilent arrays 21%, Illumina arrays 20%, in-house spotted arrays 16%

- Most respondents very satisfied or satisfied with array products & service from Affymetrix, Illumina, Agilent, ABI, and NimbleGen
Expression Assay: Labeling Methods

Affymetrix/Illumina users
- Affymetrix one-cycle, two-cycle, and whole transcript, and Illumina Total Prep most widely-used labeling methods
- NuGEN Ovation used by 27% of respondents; Ambion one round by 21%; NuGEN WT Ovation by 17%

Most frequently preferred:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Method</th>
<th>Affy one-cycle/Ambion 1 round</th>
<th>Illumina Total Prep/Affy two cycle/NuGEN Ovation</th>
<th>NuGEN Ovation or WT Ovation/Affy two cycle</th>
<th>NuGEN pico Ovation/Epicentre 2 round/Ambion 2 round</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 ug</td>
<td>n=64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01-1 ug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-10 ng</td>
<td>n=23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 ng</td>
<td>n=14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expression assay: QA/QC

- 99% evaluate RNA quality prior to labeling
- 79% use OD260/OD280 ratio
- 92% use Bioanalyzer
- 19% use agarose gel
- Less than half (44%) find Bioanalyzer trace highly predictive of assay performance; 50% find it usually correlates
DNA analysis

Annual throughput for DNA analysis

68 of survey takers answered this question, suggesting about 60% of microarray facilities are currently running DNA applications.
DNA analysis applications

ChIP-on-chip, whole genome SNP, and copy number analysis most widely used DNA assays.
DNA analysis: QA/QC

- 73% evaluate DNA quality prior to labeling
- 90% use OD260/OD280 ratio
- 59% use agarose gel pattern
- 10% other (Bioanalyzer; OD260/OD230 ratio)
Bioinformatics:

- Data Analysis
- Data Management
BI Infrastructure

- Respondents to this section: 82/149
- **Who analyzes the data?:**
 - Individual PI - 74%
 - Statistician - 55%
 - Contractor - 23%
 - Other - 10%
- 45% of respondents have 1 or more FTEs dedicated to analysis
Tools for array data QA

N=67

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual inspection of chip</td>
<td>83.6%</td>
</tr>
<tr>
<td>Pairwise scatterplots</td>
<td>70.1</td>
</tr>
<tr>
<td>Correlation coefficients</td>
<td>59.7</td>
</tr>
<tr>
<td>Within group similarity metrics</td>
<td>44.8</td>
</tr>
<tr>
<td>Principle component analysis</td>
<td>37.3</td>
</tr>
<tr>
<td>SimpleAffy (R Bioconductor)</td>
<td>19.4</td>
</tr>
<tr>
<td>Other (array metrics, R tools, external controls)</td>
<td>14.9</td>
</tr>
</tbody>
</table>
Data Analysis

- 60% use GeneSpring, 45% use R packages, 30% use Excel for array analysis
- 50% use Ingenuity, 35% use EASE/DAVID, 33% use Pathway Assist/Pathway Studio for analysis of biologic significance

Wide range of analysis tools being used with GeneSpring and Ingenuity having widest use.
Data management: storage

- 48% store microarray data in database (n=75)
- No widely-used, highly rated DB system.
- Multiple respondents identified BASE, Array Track, custom systems, or Rosetta Resolver as satisfactory or better. (n=34)
13% always submit to MIAME-compliant public DB; 29%, sometimes; 39%, only when requested by publisher; 21%, Never

84% to GEO, 31% to Array Express

Few find submission very easy; most rate it as relatively easy or not easy: GEO easier than Array Express
Next Generation Technologies: High Throughput DNA Sequencing

How are these new technologies impacting genomics research and microarrays?
HT DNA Sequencing

28% of respondents have high throughput (HT) DNA sequencer

Applications Used on HT Sequencer
N= 26
Will HT sequencing displace DNA microarrays?

- In next 5 years:
 - 9% — Yes, completely
 - 62% — Yes, partially
 - 17% — No
 - 12% — Not sure
Future Directions

- **Splice variant arrays**: 46/68 interested; 22/68 have run

- **Array of arrays**: 5/64 have run

- **3D surfaces**: 10/57 interested
Future directions: Clinical Applications

- 50% of respondents (n=60) interested in running arrays for clinical applications (experimental and FDA approved)

- 30% have investigated guidelines/regulations

- 10% familiar with NIST programs that address FDA requirements
1. Expression profiling still most frequently used array application.

2. Affymetrix system most widely-used platform, followed by Agilent and in-house spotted arrays. Illumina Bead Arrays close behind.

3. 91% of respondents expect array throughput to increase or stay the same in 2008.

4. As in previous MARG surveys, bioinformatics continues to be primary challenge for MA users and core facilities.

5. Only 9% of respondents expect HT sequencing to completely replace microarrays.

6. About half of respondents are interested in running arrays for clinical applications, same as in 2005, but only 30% have investigated guidelines.
Suggested New MARG Projects

- Data analysis: 65%
- FFPE: 61%
- New arrays: 56%

% Respondents
Acknowledgements

MARG members
Susan Hester, Chair
Christina Harrington
Nadereh Jafari
Steve Potter
Rick Jensen
Jay Tiesman
Herbert Auer
Laura Reid
Nancy Denslow

ABRF:
Support for Survey Monkey