Core Facility News/Announcements

from Jerry Kaplan, Associate Dean for Research, School of Medicine

1. We have recently obtained two new pieces of equipment that may be used by faculty.

 a. The Huntsman General Clinical Research Center (GCRC) in the School of Medicine recently acquired an AUTOPURE automated DNA extraction system. This system is capable of processing up to 96 samples per day and can be programmed to prepare DNA from whole blood, tissue culture cells and buccal swabs.

 The GCRC will be accepting applications from the entire University of Utah campus to provide DNA preparation service. Applications in the form of an abbreviated protocol will be available from the GCRC and will be screened for approval by the GCRC Advisory Committee. This service will be free of charge to investigators with approved DNA preparation only protocols. If sample numbers for a single protocol are high, the principal investigator will be asked to cover the cost of reagents.

 DNA samples will be verified by gel electrophoresis, A260/A280 ratios will be provided for each sample and returned at a standard concentration of 200 µg/ml. Details and protocol forms will be posted soon on the GCRC website http://crc-gw.med.utah.edu/index.cfm.

 b. The Health Science Center has purchased four mouse metabolic cages, each one houses one mouse during a typical experiment. These cages allow one to measure oxygen consumption, CO2 evolution, heat generation, locomotor activity, food intake, water intake and related parameters on normally behaving mice in real time. This equipment will be housed in the Department of Biochemistry. For additional information please contact Jared Rutten, Ph.D., Office: 581-3340, Lab: 581-8718 Rutten@biochem.utah.edu
DNA Sequencing Core Facility

The DNA Sequencing Core Facility at the University of Utah Health Science Center uses state of the art fluorescent DNA sequencing methods to produce high quality DNA sequencing at competitive price to the University community and off-campus users. The facility is equipped with one ABI3730 96-capillary sequencer and one ABI3100 16-capillary sequencer. The average turnaround time is two working days.

Latest News

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/12/06</td>
<td>The Core is now hosting a Freezer Program for Applied Biosystems Lab Consumables. Get it cheaper, get it faster and pay no shipping if we don't have it in stock. Download the order form and item list here (pdf file) or call us for more info.</td>
</tr>
<tr>
<td>04/22/05</td>
<td>Sequencher™ 4.5 for Mac and PC is now available.</td>
</tr>
<tr>
<td>01/13/05</td>
<td>You can now send us feedback on any issue concerning our services through this web site. Click on the feedback link above.</td>
</tr>
</tbody>
</table>

How can I open and edit my sequence files? Click on the link below:
Sequencher™ 4.5 for Mac OS 9.2 or 10.2 and higher; includes OS X users
Lab Profile – DNA Sequencing

• Not subsidized
• 210 PIs and 550 users (techs + students)
• 5 pick-up locations on campus
• 100K sequencing samples (cycle seq)
• 30K samples for re-sequencing projects
• 40% of work requests - 4 samples or less
Basic Workflow

1. Re-array all samples into 96-well plates
2. Transfer to 384-wells before cycling
3. EtOH Precipitation
4. Electrophoresis in formamide
5. Review data using LIMS + SeqA or SeqScape
Workflow Highlights

• LIMS
• Use robotics - Velocity11 Vprep Station
• We pre-mix and aliquot BD 3.1
 – 1/32 BD dilution
• Same plate from reaction to instrument
• 5 ul rxns:
 – 0.5 pmoles of primer
 – 5 -10 ug PCR or 100-150 ug of plasmid
 – Very long array life – 700 to 1100 runs
• 2% dropout rate
University of Utah
DNA Sequencing & Genomics Core Facility

Scierra from Cimarron

- Flexibility
- Oracle Database
- Other Core modules
- Tracking every process step
- Barcode enabled
- Flag problems
- Reassign samples
- Built-in inventory
- Records protocols and processes

www.cimsoft.com
Do I need a LIMS?

- Increase your productivity, minimized human error, free time and please your customers
- More than 15 – 20K samples
- Out-of-the-box – decide what features are must
- If building your own:
 - Make sure you have a Requirements Specification Document
 - Hire professionals
The Core Lab

Business Predicament

• Quality
 – Seq Data quality
 – Customer service/support

• Turn over time

• Price

What should be my focus?
University of Utah
DNA Sequencing & Genomics Core Facility

Business Approach

- Assembly line
- Adhere to a Schedule
 - Clear time deadlines
- Consistent Processing
 - Detailed protocols
 - Streamline your format
 - Delegate specific tasks to technicians

Pros:
- Predictability
- Minimize human error
- Less stress
- Consistent results
- Time saving

Cons:
- Takes a certain type of staff
- Goes against academic culture
- Extra consumables cost
Turnover and Quality

- We check most sequences individually
- Redo dropouts automatically
- Contact users having systematic problems
- 25 hrs turnover time
- Perform surveys
- Hold Lab Open houses and sponsor seminars
- Common lab area
How to get to your Customers

- Redundancy
- Redundancy
- Redundancy
Surveys

http://phpsurveyor.org
Survey Caveats

• Make them short!!
• Ask meaningful questions
• Do not do them too often!
• Act on them quickly!!
• Share the data
• Personally contact those who raised issues and gave feedback
Case Study: Post-sequencing Analyzes

- 26 questions – most of them multiple choice
- 4 min to complete
- Opened for 2 weeks
- Major questions:
 - Sequence software
 - Computer platform
 - Expectations from the Core
University of Utah
DNA Sequencing & Genomics Core Facility

Business Approach

• Assembly line
• Adhere to a Schedule
 – Clear time deadlines
• Consistent Processing
 – Detailed protocols
 – Streamline your format
 – Delegate specific tasks to technicians

Pros:
 Predictability
 Minimize human error
 Less stress
 Consistent results
 Time saving

Cons:
 Takes a certain type of staff
 Goes against academic culture
 Extra consumables cost
University of Utah
DNA Sequencing & Genomics Core Facility

Most Common Sequence Editors

- EditView: 16
- Vector NTI: 29
- DNAStart: 19
- Chromas: 23
- Sequencher (network): 45
- Sequencher (own copy): 12
- Word Processor: 20

N=124

53 labs use 2 or more programs
Including 10 labs using 4 programs
Post Sequencing Activity

- Just Reviewing: 62%
- Building Contigs: 26%
- Editing: 8%
- Formatting for Downstream: 4%
Feedback

- Software training session for Sequencher
- A Sequencing Troubleshooting Guide
- Forum of a Blog were users can exchange information
- Training on other Sequence Editors
- Phred files posted.
List of Common Editors

- Sequencher
- Chromas
- MacVector
- DNA Stars
- DNAmann
- DNA Strider
- Vector NTI
- BioEdit
- 4Peaks
- Ape
- Multalin (web)
- ClustalW
- GCG
- Staden Pkg
- NCBI
Survey Conclusions

- I don’t need more licenses for Sequencher
- I don’t need to upgrade Sequencher
- I need to provide training for downstream software
- Software they use might be influencing their Core perceived quality
Review

- Run your Core like a small business
- Decide the focus for your business
- Be consistent with your workflow and sample processing
- Develop good communication with your customers
- Enjoy It