Reproducibility of indel formation rates by comparing guideRNA format and delivery method

GERG Study 2018-2019
ABRF 2019 Annual Meeting
Kym Delventhal
Stowers Institute for Medical Research
GERG

- Started in 2015 with 4 members
- Currently have 8 members
 - Kym Delventhal (Co-Chair) Stowers Institute
 - Elizabeth Sergison (Co-Chair) Dartmouth College
 - Shondra M. Pruett-Miller - St. Jude Children’s Research Hospital
 - Channabasavaiah Gurumurthy - University of Nebraska Medical Center
 - Eric Kmiec - Gene Editing Institute
 - Maureen Regan – University of Illinois Chicago
 - Timothy J. Dahlem - Recursion Pharmaceuticals
 - Gerald Marsischky – Independent Consultant (not pictured)
Genome Engineering

- Allows for targeted modifications of genomic DNA
- A double strand break is made at the genomic location of interest
- The cell repair of the DSB allows
 - Small insertions and deletions form, in a coding region this can cause frameshift mutations
 - Homology directed repair incorporates a donor template sequence
Genome Engineering with CRISPR-Cas9

- **guideRNA**
 - 20 nucleotide recognition site next to a PAM (NGG)
 - Scaffold that interacts with Cas9

- **Cas9 protein**
 - Generates DSB 3bp upstream from the PAM site
guideRNA and Cas9 formats

- Plasmid expressing guideRNA and Cas9
 - Single guideRNA with promoter
 - Cas9 with promoter
- Ribonucleoprotein (RNP)
 - crRNA + tracrRNA annealed to form sgRNA
 - Synthetic single guideRNA
 - Cas9 Protein

A. 2-part crRNA:tracrRNA complex
B. Single fusion sgRNA trigger
GERG 2017 Study

• CRISPR/Cas9 Methods: Preferences from the Field
• Plasmid with Lipofection was the most popular combination for mammalian cell work

https://abrf.org/research-group/genome-editing-research-group-gerg
Plasmid vs RNP

- Cells that are amenable to transfection or viral transduction
- Optimal promoters for Cas9 and guideRNA must be cloned into plasmid
- Cas9 must be transcribed and translated from plasmid and takes longer to act
- Cas9 expression persists longer from a plasmid
- Plasmid DNA can become randomly integrated in the genome

- Use of nucleofection can deliver to many cell types, including primary cells
- Cas9 protein is organism independent, helpful to cores with multiple organisms
- Cas9 protein is ready to act at delivery
- RNP is degraded after 24 hours
- Cannot integrate in the genome
RNP Activity Comparison with Synthego sgRNA Low-Medium-High

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>sgRNA Type</th>
<th>RNP Ratio (sgRNA:Cas9)</th>
<th>Cas9 Protein Amount (pmol)</th>
<th># Cells/nucleofection</th>
<th>Lonza 4D Nucleofector Program</th>
<th>Cuvette</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>K562</td>
<td>Modified</td>
<td>3:1</td>
<td>25pmol</td>
<td>50,000</td>
<td>FF-120</td>
<td>Small</td>
<td>P3</td>
</tr>
</tbody>
</table>

RNP Activity Comparison with Synthego sgRNA - K562

- RL65.hZFN354C.g41: 22%
- RL64.hRG51.g14: 63%
- SS72.hNTNG2.g96: 91%

Shondra Miller
All experiments were done on HEK293 cells
LipoD293 transfection reagent for lipofections
Lonza-IIB or Lonza-4D nucleofector
Cas9 protein from Synthego
All samples were collected and sent out for Next-generation sequencing (NGS)
GERG Lab Participants

- 3 gRNA that were previously identified as low, medium, high activity
- PX330 plasmids cloned
 - Expresses guideRNA and Cas9
- Donations and discounts
 - 2-part gRNA
 - sgRNA
 - Cas9 protein
- Cell line and reagents sent to participants
- 4 sites performed cell experiments
- 1 site performed targeted amplicon NGS for indel analysis
Genome editing workflow with NGS analysis

Introduce gRNAs
Transfect, infect, or electroporate cells with genome editing reagents

Inject embryos with genome editing reagents

Culture
Single cell sort or plate pool of cells

Implant embryos

Harvest gDNA and Analyze
Harvest gDNA, PCR amplify target region, and index samples

Pool amplicons

Sequence with NGS and demultiplex

Analyze with CRIS.py

Shondra Miller
Plasmid

<table>
<thead>
<tr>
<th>Institution</th>
<th>Rxn Volume</th>
<th>Plasmid [ug]</th>
<th>Cells/rxn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stowers</td>
<td>100ul</td>
<td>2</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Dartmouth</td>
<td>100ul</td>
<td>2</td>
<td>1,000,000</td>
</tr>
<tr>
<td>UIC</td>
<td>100ul</td>
<td>2</td>
<td>1,000,000</td>
</tr>
<tr>
<td>CCHS</td>
<td>20ul</td>
<td>0.5</td>
<td>250,000</td>
</tr>
</tbody>
</table>

Lipofection

Nucleofection

Normalized Indel Formation (%)

Stowers | Dartmouth | UIC | CCHS

Normalized Indel Formation (%)

Stowers | Dartmouth | UIC | CCHS

Shirin Modarai, Elizabeth Sergison
2-Part gRNA

Lipofection

<table>
<thead>
<tr>
<th></th>
<th>Stowers</th>
<th>Dartmouth</th>
<th>UIC</th>
<th>CCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rxn volume</td>
<td>100ul</td>
<td>100ul</td>
<td>100ul</td>
<td>20ul</td>
</tr>
<tr>
<td>Ratio of RNA:protein</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cells/rxn</td>
<td>500,000</td>
<td>160,000</td>
<td>160,000</td>
<td>160,000</td>
</tr>
</tbody>
</table>

Nucleofection

<table>
<thead>
<tr>
<th></th>
<th>Stowers</th>
<th>Dartmouth</th>
<th>UIC</th>
<th>CCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rxn volume</td>
<td>100ul</td>
<td>100ul</td>
<td>100ul</td>
<td>20ul</td>
</tr>
<tr>
<td>Ratio of RNA:protein</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cells/rxn</td>
<td>460,000</td>
<td>1,400,000</td>
<td>460,000</td>
<td>350,000</td>
</tr>
</tbody>
</table>

Shirin Modarai, Elizabeth Sergison
1-Part sgRNA

Lipofection

- Stowers: 0.00%
- Dartmouth: 10.00%
- UIC: 20.00%
- CCHS: 30.00%

Nucleofection

- Stowers: 0.00%
- Dartmouth: 10.00%
- UIC: 20.00%
- CCHS: 30.00%

Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stowers</td>
<td>100ul</td>
<td>720:80</td>
<td>9:1</td>
<td>600,000</td>
</tr>
<tr>
<td>Dartmouth</td>
<td>100ul</td>
<td>720:80</td>
<td>9:1</td>
<td>600,000</td>
</tr>
<tr>
<td>UIC</td>
<td>100ul</td>
<td>720:80</td>
<td>9:1</td>
<td>600,000</td>
</tr>
<tr>
<td>CCHS</td>
<td>20ul</td>
<td>180:20:00</td>
<td>9:1</td>
<td>200,000</td>
</tr>
</tbody>
</table>

Shirin Modarai, Elizabeth Sergison
Most Reproducible: Nucleofection + 1-part sgRNA

<table>
<thead>
<tr>
<th></th>
<th>Stowers</th>
<th>Dartmouth</th>
<th>UIC</th>
<th>CCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery method with highest indel</td>
<td>nucleofection</td>
<td>lipofection</td>
<td>nucleofection</td>
<td>nucleofection</td>
</tr>
<tr>
<td>rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuideRNA format with highest indel</td>
<td>sgRNA</td>
<td>plasmid</td>
<td>sgRNA</td>
<td>sgRNA</td>
</tr>
<tr>
<td>rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery Method + Reagent Format</td>
<td>Stowers Experience</td>
<td>Stowers Highest Indel Rate</td>
<td>Dartmouth Experience</td>
<td>Dartmouth Highest Indel Rate</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Lipofection + Plasmid</td>
<td>beginner (1-10 transfections)</td>
<td>46.2</td>
<td>master (50+ transfections)</td>
<td>27.1</td>
</tr>
<tr>
<td>Lipofection + 2 part gRNA</td>
<td>beginner (1-10 transfections)</td>
<td>2.1</td>
<td>beginner (1-10 transfections)</td>
<td>13.6</td>
</tr>
<tr>
<td>Lipofection + 1 part sgRNA</td>
<td>beginner (1-10 transfections)</td>
<td>2.5</td>
<td>beginner (1-10 transfections)</td>
<td>7.3</td>
</tr>
<tr>
<td>Nucleofection + Plasmid</td>
<td>beginner (1-10 transfections)</td>
<td>6.8</td>
<td>beginner (1-10 transfections)</td>
<td>13.1</td>
</tr>
<tr>
<td>Nucleofection + 2 part gRNA</td>
<td>beginner (1-10 transfections)</td>
<td>4.7</td>
<td>beginner (1-10 transfections)</td>
<td>19.1</td>
</tr>
<tr>
<td>Nucleofection + 1 part sgRNA</td>
<td>beginner (1-10 transfections)</td>
<td>83.6</td>
<td>beginner (1-10 transfections)</td>
<td>5</td>
</tr>
</tbody>
</table>
GERG Study Conclusions

- Lipofection worked best with plasmid
- Nucleofection worked best with RNP
- Nucleofection + sgRNA had highest indel rates overall
 - Was the most reproducible
 - Worked well for beginners
- Indel rates varied across all methods, all sites
 - If your guideRNA results aren’t ideal, try another method
- Standard Operating Procedures are needed for RNP delivery
 - Difficult to determine the preferred amount to use for each method
 - Even after discussion, we still did not use exact same values
 - Adjustments based on reaction volumes, cells, equipment available
Acknowledgements

Elizabeth Sergison – Dartmouth
Brandon Miller – Stowers
Shirin Modarai – CCHS
Maureen Reagan – UIC
Shondra Miller – St. Jude
Shaina Porter – St. Jude

*Scientific Session Monday, 1:00-2:30 - CRISPR/CAS TECHNOLOGY
**Poster 154 – Monday, 2:30 - 3:30 p.m.